5
$\begingroup$

It is well known that $$\int_0^1\frac{\log{x}}{1 - x}\,\mathrm{d}x = -\frac{\pi^2}{6} $$

This is generally proved by expanding the geometric series.

My question is: can this be done in reverse?

Can we evaluate the integral $\int_0^1\frac{\log{x}}{1 - x}dx$ using other method, for example, differentiation under the integral sign, and thus prove $\zeta(2) = \frac{\pi^2}6$?

$\endgroup$
3
  • 6
    $\begingroup$ A popular method is to rewrite $\int_0^1 \frac{\log x\,\mathrm{d}x}{x-1}=\int_0^1\int_0^1 \frac{\mathrm{d}y\,\mathrm{d}x}{1−xy}$, letting $y=\alpha-\beta,\;x=\alpha+\beta\;\text{etc}.$ $\endgroup$
    – ocg
    Commented Jan 5, 2014 at 19:17
  • $\begingroup$ I wonder if it is possible to do this by considering a contour integral $$\oint \frac{\log^2 z}{1-z} $$ over some contour. $\endgroup$ Commented Jan 5, 2014 at 23:45
  • $\begingroup$ Differentiate under integral sign math.stackexchange.com/a/3404200/686284 $\endgroup$
    – Quanto
    Commented Sep 5, 2021 at 16:20

1 Answer 1

2
$\begingroup$

Credits to Daniele Ritelli: $$\begin{eqnarray*}\zeta(2)&=&\frac{4}{3}\sum_{n=0}^{+\infty}\frac{1}{(2n+1)^2}=\color{red}{\frac{4}{3}\int_{0}^{1}\frac{\log y}{y^2-1}dy}\\&=&\frac{2}{3}\int_{0}^{1}\frac{1}{y^2-1}\left[\log\left(\frac{1+x^2 y^2}{1+x^2}\right)\right]_{x=0}^{+\infty}dy\\&=&\frac{4}{3}\int_{0}^{1}\int_{0}^{+\infty}\frac{x}{(1+x^2)(1+x^2 y^2)}dx\,dy\\&=&\frac{4}{3}\int_{0}^{1}\int_{0}^{+\infty}\frac{dx\, dz}{(1+x^2)(1+z^2)}=\frac{4}{3}\cdot\frac{\pi}{4}\cdot\frac{\pi}{2}=\color{red}{\frac{\pi^2}{6}}.\end{eqnarray*}$$

$\endgroup$

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.