3
$\begingroup$

I was looking at the Wikipedia page of the Lagrange inversion theorem and stumbled upon the example. It says that to find the root of the polynomial $x^p-x+z=0$ we can find the inverse of the function $f(x)=x-x^p$ using the theorem. So we have $f(x)=z$, therefore the inverse is $x=g(z)$ where $$ g(z)=x_0+\sum_{n=1}^\infty \frac{g_n}{n!}(z-f(x_0))^n \qquad g_n=\lim_{w\to x_0}\frac{\partial^{n-1}}{\partial w^{n-1}}\left[\left(\frac{w-x_0}{f(w)-f(x_0)}\right)^n\right] $$ The result should be, according to Wikipedia: $$ g(z)=\sum_{n=1}^\infty\binom{pk}{k}\frac{z^{(p-1)k+1}}{(p-1)k+1} $$ So, I decided to try it myself. First I put $x_0=0$, because $f'(0)=1$, and calculated $g_n$ $$ g_n=\lim_{w\to0}\frac{\partial^{n-1}}{\partial w^{n-1}}\left[(1-w^{p-1})^{-n}\right] $$ Using the negative binomial theorem we obtain $$ g_n=\lim_{w\to0}\frac{\partial^{n-1}}{\partial w^{n-1}}\left[\sum_{k=0}^\infty(-1)^k\binom{n+k-1}{k}w^{-(n+k)(p-1)}\right]= \qquad |w|<1\\ =\lim_{w\to0}\sum_{k=0}^\infty(-1)^k\binom{n+k-1}{k}(-(n+k)(p-1))...(-(n+k)(p-1)-n-2)w^{-(n+k)(p-1)-n-1} $$ Now, this implies that $g_n=0$ $\forall n\geq2$, which isn't right. What did I do wrong? Thanks.

$\endgroup$
3

1 Answer 1

1
$\begingroup$

The binomial series expansion needs to be revised a little. We consider the algebraic equation \begin{align*} x^p-x+z=0\qquad\qquad\mathrm{with}\quad\qquad f(x)=x-x^p \end{align*} and calculate $g_n$ in \begin{align*} g(z)=\sum_{n=1}^{\infty}g_n\frac{z^n}{n!}\tag{1} \end{align*} according to the Lagrange inversion formula. We obtain \begin{align*} {\color{blue}{g_n}}&\color{blue}{=\lim_{w\to 0}\frac{d^{n-1}}{dw^{n-1}}\left[\left(\frac{w}{w-w^p}\right)^n\right]}\\ &=\lim_{w\to 0}\frac{d^{n-1}}{dw^{n-1}}\left[\left(1-w^{p-1}\right)^{-n}\right]\\ &=\lim_{w\to 0}\frac{d^{n-1}}{dw^{n-1}}\sum_{k=0}^{\infty}\binom{-n}{k}\left(-w^{p-1}\right)^k\\ &=\lim_{w\to 0}\frac{d^{n-1}}{dw^{n-1}}\sum_{k=0}^{\infty}\binom{n+k-1}{k}w^{(p-1)k}\\ \end{align*} When we differentiate $n-1$ times all terms with $(p-1)k<n-1$ cancel out and we get \begin{align*} g_n=\lim_{w\to 0}\sum_{k=\left\lfloor\frac{n-1}{p-1}\right\rfloor}^{\infty} \binom{n+k-1}{k}\left((p-1)k\right)^{\underline{n-1}}w^{(p-1)k-(n-1)}\tag{2} \end{align*} where we use the falling factorial notation $q^{\underline{n}}=q(q-1)\cdots (q-n+1)$. Thanks to the limit all non-constant terms cancel out and for the constant term we need \begin{align*} (p-1)k-(n-1)=0\qquad \mathrm{which\ gives}\qquad k=\frac{n-1}{p-1}\tag{3} \end{align*} This implies that $p-1$ has to be a divisor of $n-1$. We obtain from (2) and (3) \begin{align*} \color{blue}{g_n}&=\binom{n+\frac{n-1}{p-1}-1}{\frac{n-1}{p-1}}(n-1)^{\underline{n-1}}\\ &\color{blue}{=\binom{\frac{p}{p-1}(n-1)}{n-1}(n-1)!} \end{align*} where we simplified the upper index of the binomial coefficient and also use $\binom{p}{q}=\binom{p}{p-q}$.

We therefore can write (1) as \begin{align*} g(z)&=\sum_{n=1}^{\infty}g_n\frac{z^n}{n!}\\ &=\sum_{{n=1}\atop{p-1|n-1}}^{\infty}\binom{\frac{p}{p-1}(n-1)}{n-1}(n-1)!\frac{z^n}{n!}\\ &=\sum_{{n=1}\atop{p-1|n-1}}^{\infty}\binom{\frac{p}{p-1}(n-1)}{n-1}\frac{z^n}{n}\\ \end{align*} Noting that $p-1|n-1$ we can change the index $n$ by letting \begin{align*} n-1&=k(p-1)\qquad\qquad k=1,2,\ldots\\ \end{align*} and we obtain \begin{align*} \color{blue}{g(z)}&=\sum_{k=1}^{\infty}\binom{\frac{p}{p-1}k(p-1)}{k(p-1)}\frac{z^{(p-1)k+1}}{k(p-1)+1}\\ &\color{blue}{=\sum_{k=1}^{\infty}\binom{pk}{k}\frac{z^{(p-1)k+1}}{(p-1)k+1}} \end{align*} in accordance with the Wikipedia example. In the final step we use again $\binom{p}{q}=\binom{p}{p-q}$.

$\endgroup$

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.