From the course: Introduction to Stata
Unlock the full course today
Join today to access over 24,600 courses taught by industry experts.
The linear probability, logit, and probit models - Stata Tutorial
From the course: Introduction to Stata
The linear probability, logit, and probit models
- When a dependent variable is measured as a binary variable, we'll need to make a choice on how to model this. We could estimate such a model, like we've done previously, through ordinary least squares. Such a model is called a linear probability model. However, it has some disadvantages, and this is why we often prefer to specify logit or probit models. One major disadvantage of the linear probability model is that it causes out of bound predictions. Here is a classical example of out of bound predictions from a linear probability model. There are two variables, one continuous x variable, and one binary y variable. The red line represents the predicted values of the linear probability model. Hopefully, you can quickly identify what the problem is. The linear probability model predicts values below zero and above one. However, it's not possible to have a probability that is lower than zero or higher than one. These…
Practice while you learn with exercise files
Download the files the instructor uses to teach the course. Follow along and learn by watching, listening and practicing.