Cambridge, Massachusetts, United States
2K followers 500+ connections

Join to view profile

About

Specialties: Public Biotech Investing, Small Molecule Drug Discovery, Project…

Experience & Education

  • MPM BioImpact

View Rami’s full experience

See their title, tenure and more.

or

By clicking Continue to join or sign in, you agree to LinkedIn’s User Agreement, Privacy Policy, and Cookie Policy.

Publications

  • Precision Targeted Therapy With BLU-667 for RET-Driven Cancers

    Cancer Discovery

    The receptor tyrosine kinase, rearranged during transfection (RET), is an oncogenic driver activated in multiple cancers including non-small cell lung cancer (NSCLC), medullary thyroid cancer (MTC) and papillary thyroid cancer (PTC). No approved therapies have been designed to target RET; treatment has been limited to multi-kinase inhibitors (MKIs) which can have significant off-target toxicities and limited efficacy. BLU-667 is a highly potent and selective RET inhibitor designed to overcome…

    The receptor tyrosine kinase, rearranged during transfection (RET), is an oncogenic driver activated in multiple cancers including non-small cell lung cancer (NSCLC), medullary thyroid cancer (MTC) and papillary thyroid cancer (PTC). No approved therapies have been designed to target RET; treatment has been limited to multi-kinase inhibitors (MKIs) which can have significant off-target toxicities and limited efficacy. BLU-667 is a highly potent and selective RET inhibitor designed to overcome these limitations. In vitro, BLU-667 demonstrated ≥10-fold increased potency over approved MKIs against oncogenic RET variants and resistance mutants. In vivo, BLU-667 potently inhibited growth of NSCLC and thyroid cancer xenografts driven by various RET mutations and fusions without inhibiting vascular endothelial growth factor receptor 2 (VEGFR-2). In first-in-human testing, BLU-667 significantly inhibited RET signaling and induced durable clinical responses in patients with RET-altered NSCLC and MTC without notable off target toxicity, providing clinical validation for selective RET targeting.

    See publication
  • Targeting cancer with kinase inhibitors

    Journal of Clinical Investigation

  • Functional epigenetics approach identifies BRM/SMARCA2 as a critical synthetic lethal target in BRG1-deficient cancers

    PNAS

    Mammalian SWI/SNF (mSWI/SNF) alterations are highly prevalent, now estimated to occur in 20% of cancers. The inactivating nature of mSWI/SNF mutations presents a challenge for devising strategies to target these epigenetic lesions. By performing a comprehensive pooled shRNA screen of the epigenome using a unique deep coverage design shRNA (DECODER) library across a large cancer cell line panel, we identified that BRG1/SMARCA4 mutant cancer cells are highly sensitive to BRM/SMARCA2 depletion…

    Mammalian SWI/SNF (mSWI/SNF) alterations are highly prevalent, now estimated to occur in 20% of cancers. The inactivating nature of mSWI/SNF mutations presents a challenge for devising strategies to target these epigenetic lesions. By performing a comprehensive pooled shRNA screen of the epigenome using a unique deep coverage design shRNA (DECODER) library across a large cancer cell line panel, we identified that BRG1/SMARCA4 mutant cancer cells are highly sensitive to BRM/SMARCA2 depletion. Our study provides important mechanistic insight into the BRM/BRG1 synthetic lethal relationship, shows this finding translates in vivo, and highlights BRM as a promising therapeutic target for the treatment BRG1-mutant cancers.

    Other authors
    See publication
  • Pharmacological and genomic profiling identifies NF-κB–targeted treatment strategies for mantle cell lymphoma

    Nature Medicine

    Mantle cell lymphoma (MCL) is an aggressive malignancy that is characterized by poor prognosis1. Large-scale pharmacological profiling across more than 100 hematological cell line models identified a subset of MCL cell lines that are highly sensitive to the B cell receptor (BCR) signaling inhibitors ibrutinib and sotrastaurin. Sensitive MCL models exhibited chronic activation of the BCR-driven classical nuclear factor-κB (NF-κB) pathway, whereas insensitive cell lines displayed activation of…

    Mantle cell lymphoma (MCL) is an aggressive malignancy that is characterized by poor prognosis1. Large-scale pharmacological profiling across more than 100 hematological cell line models identified a subset of MCL cell lines that are highly sensitive to the B cell receptor (BCR) signaling inhibitors ibrutinib and sotrastaurin. Sensitive MCL models exhibited chronic activation of the BCR-driven classical nuclear factor-κB (NF-κB) pathway, whereas insensitive cell lines displayed activation of the alternative NF-κB pathway. Transcriptome sequencing revealed genetic lesions in alternative NF-κB pathway signaling components in ibrutinib-insensitive cell lines, and sequencing of 165 samples from patients with MCL identified recurrent mutations in TRAF2 or BIRC3 in 15% of these individuals. Although they are associated with insensitivity to ibrutinib, lesions in the alternative NF-κB pathway conferred dependence on the protein kinase NIK (also called mitogen-activated protein 3 kinase 14 or MAP3K14) both in vitro and in vivo. Thus, NIK is a new therapeutic target for MCL treatment, particularly for lymphomas that are refractory to BCR pathway inhibitors. Our findings reveal a pattern of mutually exclusive activation of the BCR–NF-κB or NIK–NF-κB pathways in MCL and provide critical insights into patient stratification strategies for NF-κB pathway–targeted agents.

    Other authors
    See publication

Honors & Awards

  • Rising Star of the Year

    Blueprint Medicines

Languages

  • Arabic

    -

Organizations

  • American Association for Cancer Research

    -

    - Present

View Rami’s full profile

  • See who you know in common
  • Get introduced
  • Contact Rami directly
Join to view full profile

Other similar profiles

Explore top content on LinkedIn

Find curated posts and insights for relevant topics all in one place.

View top content

Others named Rami Rahal