We generalize the integral as follows:
$$
\int_0^1 \left(x^{-\alpha x}\right)^{\left(x^{-\alpha x}\right)^{\left(x^{-\alpha x}\right)^{\cdots}}} \, dx = \frac{\mathrm{Li}_2(\alpha)}{\alpha}
$$
This yields the following elegant evaluations:
$$
\int_0^1 \left(x^{x}\right)^{\left(x^{x}\right)^{\left(x^{x}\right)^{\cdots}}} \, dx = \frac{\pi^2}{12}
$$
$$
\int_0^1 \left(x^{-x}\right)^{\left(x^{-x}\right)^{\left(x^{-x}\right)^{\cdots}}} \, dx = \frac{\pi^2}{6}
$$
$$
\int_0^1 \left(x^{-x/2}\right)^{\left(x^{-x/2}\right)^{\left(x^{-x/2}\right)^{\cdots}}} \, dx = \frac{\pi^2}{6} - \ln^2(2)
$$
Proof of the Generalization
It's similar to the answer provided above by Mariusz Iwaniuk
We evaluate the general integral:
$$
\int_0^1 \left(x^{-\alpha x}\right)^{\left(x^{-\alpha x}\right)^{\left(x^{-\alpha x}\right)^{\cdots}}} \, dx
$$
Let
$$
y = \left(x^{-\alpha x}\right)^{\left(x^{-\alpha x}\right)^{\left(x^{-\alpha x}\right)^{\cdots}}}
$$
Then it can be deduced that:
$$
y = \frac{W(\alpha x \ln x)}{\alpha x \ln x}
$$
where ( W(x) ) is the Lambert W function (see http://mathworld.wolfram.com/LambertW-Function.html ):
$$
W(x) = \sum_{n=1}^{\infty} \frac{(-n)^{n-1} x^n}{n!}
$$
Using this, the integral becomes:
$$
\int_0^1 \frac{W(\alpha x \ln x)}{\alpha x \ln x} \, dx
$$
Expanding $ W(\alpha x \ln x) $ into a power series:
\begin{align*}
\int_0^1 \frac{W(\alpha x \ln x)}{\alpha x \ln x} \, dx
&= \int_0^1 \left( \sum_{n=1}^{\infty} \frac{(-1)^{n-1} \alpha^{n-1} n^{n-1} x^{n-1} \ln^{n-1}(x)}{n!} \right) dx \\
&= \sum_{n=1}^{\infty} \int_0^1 \frac{(-1)^{n-1} \alpha^{n-1} n^{n-1} x^{n-1} \ln^{n-1}(x)}{n!} \, dx
\end{align*}
Now we use the integral identity:
$$
\int_0^1 x^{n-1} \ln^{n-1}(x) \, dx = (-1)^{n-1} \left( \frac{1}{n} \right)^n \Gamma(n)
$$
Proof-
$$
\int_0^1 x^{n-1} \ln^{m-1}(x) \, dx = \frac{d^{m-1}}{dn^{m-1}}\int_0^1 x^{n-1} \, dx=\frac{d^{m-1}}{dn^{m-1}}\frac{1}{n}=\frac{(-1)^{m-1}\Gamma(m)}{n^m}
$$
All that remains is taking limit m tending to n.
And thus,
$$
\int_0^1 x^{n-1} \ln^{n-1}(x) \, dx = (-1)^{n-1} \left( \frac{1}{n} \right)^n \Gamma(n)
$$
Therefore:
\begin{align*}
\sum_{n=1}^{\infty} \frac{(-1)^{n-1} \alpha^{n-1} n^{n-1}}{n!} \cdot (-1)^{n-1} \left( \frac{1}{n} \right)^n \Gamma(n)
&= \sum_{n=1}^{\infty} \frac{\alpha^{n-1}}{n^2} \\
&= \frac{\mathrm{Li}_2(\alpha)}{\alpha}
\end{align*}
Hence proved. $\blacksquare$