25
$\begingroup$

How can it be shown that $$\lim_{p\to\infty}I(p)= \lim_{p \to \infty}\int^{1}_0 (x^x)^{\scriptscriptstyle {(x^x)^{(x^x)^{(x^x)^{(x^x)^{(x^x)...(p \; times)}}}}}} dx= \frac{\pi^2}{12}$$

$I(1)=\int^{1}_0 x^x dx=\sum_{n=0} ^{\infty} \frac{1}{n!}\int^{1}_0 \ln(x)^nx^n dx$

also $\int^{1}_0 \ln(x)^nx^n dx=(-1)^n (1+n)^{-1-n}n!$ .

I don't know how to calculate $I(p)$ beyond $p=1.$

Note: This integral was proposed on Romanian Mathematical Magazine and two solutions can be found here.

$\endgroup$
6
  • 2
    $\begingroup$ I guess you should use Lambert W function $\endgroup$
    – user715522
    Commented Feb 8, 2020 at 12:43
  • 2
    $\begingroup$ Part of the solution may be showing that this infinite exponent converges for $0 < x < 1$. It is known that the infinite exponential $x^{x^{x^\cdots}}$ diverges by oscillation for $x$ near $0$. $\endgroup$
    – GEdgar
    Commented Feb 8, 2020 at 14:45
  • 2
    $\begingroup$ @GEdgar true. But this is straightforward as $x^x$ has a minimum of $e^{-1/e}$ at $x=1/e$ which is well above the point where $x^{x^{...}}$ starts oscillating (i.e. $x < e^{-e}$) $\endgroup$ Commented Feb 8, 2020 at 16:03
  • 7
    $\begingroup$ It is interesting to note that the related integral below has much slower convergence. $$\lim_{p\to\infty}I(p)= \lim_{p \to \infty}\int^{1}_0 (x^{-x})^{\scriptscriptstyle {(x^{-x})^{(x^{-x})^{(x^{-x})^{(x^{-x})^{(x^{-x})...(p \; times)}}}}}} dx=\frac{\pi^2}{6}$$ $\endgroup$ Commented Feb 8, 2020 at 18:30
  • 1
    $\begingroup$ Link is dead... $\endgroup$
    – Mason
    Commented 23 hours ago

2 Answers 2

20
$\begingroup$

From here: $$W(x)=\sum _{n=1}^{\infty } \frac{(-n)^{n-1} x^n}{n!}$$

and with CAS help: $$\begin{align} \int_0^1 -\frac{W(-x \ln (x))}{x \ln (x)} \, dx &=\int_0^1 \left(\sum _{n=1}^{\infty } \frac{(-1)^{2 n} n^{-1+n} x^{-1+n} \ln ^{-1+n}(x)}{n!}\right) \, dx \\ &=\sum _{n=1}^{\infty } \int_0^1 \frac{(-1)^{2 n} n^{-1+n} x^{-1+n} \ln ^{-1+n}(x)}{n!} \, dx\\ &=\sum _{n=1}^{\infty } \frac{\left((-1)^{2 n} n^{-1+n}\right) \int_0^1 x^{-1+n} \ln ^{-1+n}(x) \, dx}{n!}\\ &=\sum _{n=1}^{\infty } \frac{\left((-1)^{2 n} n^{-1+n}\right) \left(-\left(-\frac{1}{n}\right)^n \Gamma (n)\right)}{n!}\\ &=\sum _{n=1}^{\infty } \frac{(-1)^{1+3 n}}{n^2}\\ &=\frac{\pi ^2}{12}. \end{align}$$

$\endgroup$
4
  • 1
    $\begingroup$ Where does the closed form for $\displaystyle\int_0^1 (x\ln x)^m\,\mathrm{d}x$ in the last step come from? I could only solve it in terms of the incomplete gamma function. $\endgroup$
    – Jam
    Commented Feb 8, 2020 at 14:36
  • 2
    $\begingroup$ @Jam You can do repeated integration by parts and the boundary terms will vanish $\endgroup$ Commented Feb 8, 2020 at 14:46
  • 1
    $\begingroup$ @Jam. $\int_0^1 (x \ln (x))^m \, dx=-\left(-\frac{1}{1+m}\right)^{1+m} \Gamma (1+m)$ $\endgroup$ Commented Feb 8, 2020 at 14:47
  • 7
    $\begingroup$ @Jam Consider $\displaystyle f(m) = \int_0^1 x^m \,{dx} = \frac{1}{1+m}$. Then $\displaystyle f^{(m)}(m) = \int_0^1 (x \ln{x})^m \,{dx} = \frac{(-1)^m m! }{(1+m)^{n+1}}$ $\endgroup$
    – Zack
    Commented Feb 8, 2020 at 14:53
2
$\begingroup$

We generalize the integral as follows:

$$ \int_0^1 \left(x^{-\alpha x}\right)^{\left(x^{-\alpha x}\right)^{\left(x^{-\alpha x}\right)^{\cdots}}} \, dx = \frac{\mathrm{Li}_2(\alpha)}{\alpha} $$

This yields the following elegant evaluations:

$$ \int_0^1 \left(x^{x}\right)^{\left(x^{x}\right)^{\left(x^{x}\right)^{\cdots}}} \, dx = \frac{\pi^2}{12} $$

$$ \int_0^1 \left(x^{-x}\right)^{\left(x^{-x}\right)^{\left(x^{-x}\right)^{\cdots}}} \, dx = \frac{\pi^2}{6} $$

$$ \int_0^1 \left(x^{-x/2}\right)^{\left(x^{-x/2}\right)^{\left(x^{-x/2}\right)^{\cdots}}} \, dx = \frac{\pi^2}{6} - \ln^2(2) $$

Proof of the Generalization It's similar to the answer provided above by Mariusz Iwaniuk

We evaluate the general integral:

$$ \int_0^1 \left(x^{-\alpha x}\right)^{\left(x^{-\alpha x}\right)^{\left(x^{-\alpha x}\right)^{\cdots}}} \, dx $$

Let

$$ y = \left(x^{-\alpha x}\right)^{\left(x^{-\alpha x}\right)^{\left(x^{-\alpha x}\right)^{\cdots}}} $$

Then it can be deduced that:

$$ y = \frac{W(\alpha x \ln x)}{\alpha x \ln x} $$

where ( W(x) ) is the Lambert W function (see http://mathworld.wolfram.com/LambertW-Function.html ):

$$ W(x) = \sum_{n=1}^{\infty} \frac{(-n)^{n-1} x^n}{n!} $$

Using this, the integral becomes:

$$ \int_0^1 \frac{W(\alpha x \ln x)}{\alpha x \ln x} \, dx $$

Expanding $ W(\alpha x \ln x) $ into a power series:

\begin{align*} \int_0^1 \frac{W(\alpha x \ln x)}{\alpha x \ln x} \, dx &= \int_0^1 \left( \sum_{n=1}^{\infty} \frac{(-1)^{n-1} \alpha^{n-1} n^{n-1} x^{n-1} \ln^{n-1}(x)}{n!} \right) dx \\ &= \sum_{n=1}^{\infty} \int_0^1 \frac{(-1)^{n-1} \alpha^{n-1} n^{n-1} x^{n-1} \ln^{n-1}(x)}{n!} \, dx \end{align*}

Now we use the integral identity:

$$ \int_0^1 x^{n-1} \ln^{n-1}(x) \, dx = (-1)^{n-1} \left( \frac{1}{n} \right)^n \Gamma(n) $$ Proof- $$ \int_0^1 x^{n-1} \ln^{m-1}(x) \, dx = \frac{d^{m-1}}{dn^{m-1}}\int_0^1 x^{n-1} \, dx=\frac{d^{m-1}}{dn^{m-1}}\frac{1}{n}=\frac{(-1)^{m-1}\Gamma(m)}{n^m} $$ All that remains is taking limit m tending to n.

And thus, $$ \int_0^1 x^{n-1} \ln^{n-1}(x) \, dx = (-1)^{n-1} \left( \frac{1}{n} \right)^n \Gamma(n) $$ Therefore:

\begin{align*} \sum_{n=1}^{\infty} \frac{(-1)^{n-1} \alpha^{n-1} n^{n-1}}{n!} \cdot (-1)^{n-1} \left( \frac{1}{n} \right)^n \Gamma(n) &= \sum_{n=1}^{\infty} \frac{\alpha^{n-1}}{n^2} \\ &= \frac{\mathrm{Li}_2(\alpha)}{\alpha} \end{align*}

Hence proved. $\blacksquare$

$\endgroup$

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.